Activity 1.2.1 Function Review

1. Evaluate the following functions for the values defined below. Remember the meaning of function notation: $f(x)$ does not mean f times x.
a. $f(x)=4+x$ for $x=-6,0$, and 10
b. $f(x)=-5 x+3$ for $x=-9,-1$, and 3
c. $g(h)=h^{2}-3 h+5$ for $h=-4,6$, and 12
d. $c(d)=-\frac{3}{4} d+5$ for $d=-16,-4$, and 24
2. Josh worked at day camp over the summer and earned $\$ 8.00$ per hour. Complete the table below and create a graph that represents the relationship the two variables. Label and scale the axes.

Hours Worked	Total Pay (dollars)
10	
15	160
25	240

3. Complete the table below. For each function, give the natural domain of the function as the domain.
$\left.\begin{array}{|l|l|l|}\hline \text { a. } f(x)=-3 x+2 & \text { b. } f(x)=0.5 x^{2}-2 x+5 \\ \text { Domain: } & & \begin{array}{l}\text { c. } f(x)=\sqrt{x} \\ \text { Domain: }\end{array} \\ \text { Range: } & \text { Range: } \\ & \\ \text { Range: }\end{array}\right]$
4. Write the domain and range of each of the following functions.
a.

Name	Jack	Simone	Trish	Peter
Birthday	Nov. 7	Jan. 3	Jul. 4	Sept. 9

b. $\{(4,3),(-8,0),(-20,-6),(18,7.5),(0,1)\}$
c. David's Growth Chart

Age (years)	0	3	6	9	12
Height (inches)	21	38	45	54	63

5. The table below shows the diameter and circumference of five circles.

Diameter	Circumference
2	2π
3	3π
4	4π
5	5π
6	6π

a. Represent the data as ordered pairs.
b. Graph the ordered pairs listed above. Label and scale the axes.

c. Write a verbal description of this function.
d. Write an equation that represents this function.
6. Thomas bought a new car yesterday for $\$ 20,000$. He learned that the car depreciates 15% of its value each year (that is, the value decreases by 15% each year). How much will his car be worth in 6 years?
Hint: The decay or depreciation function can be written $f(x)=a b^{x}$, where $a=$ the initial value, $b=$ the decay factor (which is $1-$ percent decrease per year,) and $x=$ number of years that the price has decreased.
a. Write an equation that models the amount that Thomas' car will depreciate in x years.
b. Make a table of ordered pairs that satisfy the equation in Part a. Graph the function by graphing the ordered pairs first, then drawing a smooth curve between the points.

x	y

7. The function $f(c)=\frac{9}{5} c+32$ describes a real-world relationship.
a. Make a table of ordered pairs that satisfy the function. Graph the function by graphing the ordered pairs first, then drawing a smooth line between the points.

x	y

