GUIDED PRACTICE

1. Vocabulary Explain the reason for the shape of the graph of an absolute-value function.

SEE EXAMPLE 1 Let $g(x)$ be the indicated transformation of $f(x)=|x|$. Write the rule for $g(x)$ and p. 158 graph the function.
2. 5 units down
3. 4 units left

SEE EXAMPLE 2
p. $159 \quad \square$

Translate $f(x)=|x|$ so that the vertex is at the given point. Then graph.
4. $(-4,-5)$
5. $(1,6)$

SEE EXAMPLE 3 Perform each transformation. Then graph.
p. 159
6. Reflect the graph of $f(x)=|2 x+3|-4$ across the y-axis.
7. Stretch $f(x)=|x+3|$ vertically by a factor of 2 .
8. Compress $f(x)=|x+3|$ horizontally by a factor of $\frac{2}{3}$.

PRACTICE AND PROBLEM SOLVING

Independent Practice	
For Exercises	See Example
$9-11$	1
$12-14$	2
$15-17$	3

Extra Practice

Skills Practice p. S7
Application Practice p. S33

Let $g(x)$ be the indicated transformation of $f(x)=|x|$. Write the rule for $g(x)$ and graph the function.
9. 2 units right
10. 1 unit down
11. 4 units left

Translate $f(x)=|x|$ so that the vertex is at the given point. Then graph.
12. $(8,0.5)$
13. (1.5, 4.5)
14. $(-2.5,3)$

Perform each transformation. Then graph.
15. Reflect $f(x)=|x-5|+2$ across the x-axis.
16. Compress $f(x)=|2 x|-3$ vertically by a factor of $\frac{1}{4}$.
17. Stretch $f(x)=|2 x|-3$ horizontally by a factor of $\frac{3}{2}$.
18. Football Yard lines of a football field have the relationship shown in the table below (0 yard lines are the goal lines).

$\|c\|$	Football Field Yard Lines										
Distance from One End Zone (yd)	0	10	20	30	40	50	60	70	80	90	100
Marked Yard Line	0	10	20	30	40	50	40	30	20	10	0

a. Write an absolute-value function to find the marked yard line for a given distance from the end zone. (Hint: Graph the ordered pairs to find the transformation from $f(x)=|x|$.)
b. What yard line is 195 feet from the end zone?
c. What if...? Suppose the absolute-value function is based on the distance from the end zone in feet. How would this relationship affect the function?

